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Fault detection in sensor information fusionKalman filter
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Abstract

An approach to the test of the sensor information fusion Kalman filter is proposed. It is based on the introduced statistics of
mathematical expectation of the spectral norm of a normalized innovation matrix. The approach allows for simultaneous test
of the mathematical expectation and the variance of innovation sequence in real time and does not require a priori information
on values of the change in its statistical characteristics under faults. Using this approach, fault detection algorithm for the
sensor information fusion Kalman filter is developed.
� 2008 Elsevier GmbH. All rights reserved.
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1. Introduction

The necessity for operative test of the Kalman filter arises
in many problems concerned with navigation and control
[1,2]. Some algorithmic methods have been developed for
this purpose. The algorithmic techniques for testing the
Kalman filter are reviewed in [3] from which it follows
that, by this way one can not only ensure failure localiza-
tion and detection but also estimate correction. At present
there are number of the algorithmic methods for the testing
of Kalman filter [1–7], which is used for fault detection in
Kalman filter different diagnostic signs. In spite of the great
variety of the algorithmic methods for testing of Kalman
filter, to date, questions of monitoring and diagnostics of
its multi-channel modification (sensor information fusion
Kalman filter) are not investigated.
In many applications it is possible to receive informa-

tion on the state vector of a dynamic system from several
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sources simultaneously (as an integrated navigation sys-
tem). Integrated navigation systems are still used in various
applications successfully. In the aerospace and navy naviga-
tion systems, GPS, DGPS, GLONASS and INS systems are
integrated in different combinations via Kalman filtering
[5,8–15]. Federated [16–18] or parallel [19,20] Kalman fil-
ters are satisfactorily used to integrate different navigation
systems. These kinds of filters are known as multi-channel or
sensor information fusion Kalman filters. Algorithms have
been developed for multi-channel estimation of the system
parameters and state, which use for the estimation a math-
ematical model of a dynamic system, as well as measure-
ments of several measurement channels (sensor information
fusion Kalman filters). In these types of Kalman filters,
simultaneous processing of the available data allows one
to improve the estimation accuracy of the state vector and
the reliability of data processing. Application of these algo-
rithmic techniques for testing the sensor information fusion
Kalman filters is concerned with a considerable increase of
the required amount of computation because each estima-
tion channel requires its own “failure detector”. Taking into
account that the multi-channel estimation procedure also
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requires a great amount of computation, implementation of
the test of the sensor information fusion Kalman filter by
the previous technique is not an easy problem. Hence, it
is necessary to develop simple algorithms for test of the
multi-channel estimation procedures in order to perform
real-time test of the filter without a priori information on
changes in its parameters under fault. In this paper, the al-
gorithmic testing of the sensor information fusion Kalman
filter is investigated. This problem is solved by using the
introduced statistic of mathematical expectation of spectral
norm of the normalized innovation matrix of the mentioned
Kalman filter. The approach allows simultaneous test of the
mathematical expectation and the variance of the normal-
ized innovation sequence.

2. Innovation approach to test of the sensor
information fusion Kalman filter

Let us consider a linear dynamic system given by the
equation of state

x(k + 1) = �(k + 1, k)x(k) + G(k + 1, k)w(k) (1)

where x(k) is the N-dimensional state vector of system,
�(k+1, k) is the N×N transition matrix of the system,w(k)
is the random N-dimensional perturbation vector, G(k+1, k)
is the N × N transition matrix of perturbations (noise of the
system). The process x(k) is observed by a multi-channel
system consisting of m measurement channels; the equation
of measurements for the i th channel has the form

zi (k) = Hi (k)x(k) + vi (k) (2)

where zi (k) is the n-dimensional measurement vector of
measurements of the ith measurement channel, Hi (k) is the
n × N measurement matrix of the system for the ith chan-
nel. Measurement noises of the i th channel vi (k) have a zero
vector of means and the correlation matrix E[vi (k)vTi ( j)]=
Rii (k)�(k j), they are uncorrelated in individual channels.
The state vector of the system can be estimated by us-

ing a sensor information fusion Kalman filter [5], which is
characterized by

x̂(k/k) = x̂(k/k − 1) +
m∑
i=1

P(k/k)HT
i (k)R

−1
i i (k)�i (k) (3)

where x̂(k/k − 1) is the extrapolation value, �i is the inno-
vation sequence of the i th channel

�i (k) = zi (k) − Hi (k)x̂(k/k − 1) (4)

The correlation matrix of the filtration error is given as

P−1(k/k) = P−1(k/k − 1) +
m∑
i=1

HT
i (k)R

−1
11 (k)Hi (k) (5)

The correlation matrix of the extrapolation error is calculated
as

P(k/k − 1)

= �(k, k − 1)P(k − 1/k − 1)�T(k, k − 1)

+ G(k, k − 1)Q(k − 1)GT(k, k − 1) (6)

The sensor information fusion filter corresponding to Eqs.
(3)–(6) is called a parallel filter since the optimal estimate
in this case is obtained by simultaneous weight summation
of the innovation sequences �i (k) of all channels with the
use of the common extrapolator. As is seen from (3)–(6),
implementation of the parallel technique for estimating the
state vector requires m filters, and for each filter the gain
matrix, correlation matrix of filtering errors, etc. must be
calculated. For normal functioning of the sensor informa-
tion fusion Kalman filter (3)–(6), the normalized innovation
sequences of different channels

�̃i (k) = [Hi (k)P(k/k − 1)HT
i (k) + Rii (k)]

−1/2�i (k) (7)

obey the distribution N (0, 1) [21]. Faults leading to an abrupt
change in the measurement channel characteristic, computer
failures, anomalous measurements, changes in the statisti-
cal characteristics of measurement or object noise, and a
variance of trajectories of the real process and the estimates
generated by the Kalman filter, etc. result in changes in the
previous characteristics of the sequence �̃(k) . It is of inter-
est to develop an operative method for simultaneous check
of the mathematical expectation and the variance of the nor-
malized innovation sequence (7). For this purpose, two hy-
potheses are set up: �0 – Kalman filter operates normally
and �1 – a fault occurs in the estimation system. Let us in-
troduce the following definition.

Definition. A rectangular n ×m matrix (n is the innovation
vector dimension; n�2; m�2) is defined as a normalized
innovation matrix of the m-channel Kalman filter, in which
columns are represented by normalized innovation vectors
of different channels, corresponding to the same moment of
time (dimensions of the normalized innovation vectors of
different channels are assumed to be equal), i.e.,

A(k) = [�̃1(k), �̃2(k), . . . , �̃m(k)] (8)

To test the hypotheses �0 and �1, the matrix AT(k)A(k),
which obey the Wishart distribution, can be used. There
exists some interesting results on the eigenvalues and
maximum and minimum eigenvalues of Wishart distributed
matrices [22–24]. But application of mentioned works to
fault detection problem of multidimensional dynamic sys-
tems turns out to be very complicated since there are diffi-
culties in determining the confidence domain (or intervals)
for the eigenvalues of random matrix.
In this study to test the hypotheses �0 and �1, the spectral

norm of the matrix A(k) is used. As is known [25], the
spectral norm ‖‖2 of the real matrix A(k) is defined by the
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formula:

‖A(k)‖2 ≡ max{(�i [AT(k)A(k)])1/2} (9)

where �i [AT(k)A(k)] are eigenvalues of the matrix
AT(k)A(k).
Square roots of eigenvalues of the matrix AT(k)A(k), i.e.,

the values �i [AT(k)A(k)], are called singular values of the
matrix A(k). Therefore, the spectral norm of the matrix A(k)
is equal to its maximal singular value. The singular numbers
are real and nonnegative [25]. Due to the same reasons, de-
termination of the singular numbers and, consequently, the
spectral norm is a simpler problem in terms of computing
than obtaining eigenvalues for a arbitrary matrix. This ex-
plains the choice of the spectral norm of the normalized in-
novation matrix of Kalman filter as a scalar measure to be
tested. To test the hypotheses �0 and �1, a one-dimensional
statistic of mathematical expectation of the spectral norm of
the matrix A(k) is introduced. As an estimate of mathemati-
cal expectation its arithmetic mean will be used. For a great
value of k the following expression may be written as

E{‖A(k)‖2} ≈ ‖A(k)‖2 = 1

k

k∑
j=1

‖A( j)‖2 (10)

Hansen [26] has found a number of bounds for mathemat-
ical expectation of the spectral norm of the random matrix
A(k) ∈ Rn×m composed of normally distributed random
values with zero mathematical expectation and the standard
deviation �(ai j ∈ N (0, �)). Let us consider some of them.
Assume that rTi and a j denote rows and columns of matrix
A. Let us introduce the maximal row-column norm

� ≡ max[‖ri‖2, ‖a j‖2] (11)

where ‖ri‖2 and ‖a j |2 are the corresponding Euclidean vec-
tor norms. The following inequality is true [26]:

E{�}�E{‖A‖2}� [max(n,m)]1/2E{�} (12)

It is not easy to use formula (12) in practical calculation
because it is difficult to estimate E{�}. That is why E{�} is
replaced by its lower bound

�
√
max(n,m) = max[E{‖ri‖2}, E{‖a j‖2}]�E{�} (13)

Eq. (12) will be written in the following form:

�
√
max(n,m)�E{‖A‖2}� f (max(n,m))

× �
√
max(n,m) (14)

where f is the unknown function to be defined. By mathemat-
ical computer simulation it was shown in [26] that the value
�
√
max(n,m) is an adequate lower bound for E{‖A(k)‖2}.

By numerical calculation it was also shown that the func-
tion f at n = m → ∞ approaches 2 asymptotically and f is
always between the values 1 and 2. Therefore the value 2
is proposed for an estimate of the function f. In view of the

foregoing, the following simple bounds for E{‖A(k)‖2} can
be obtained:

�
√
max(n,m)�E{‖A‖2}�2�

√
max(n,m) (15)

Expression (15) characterizes the relation between the stan-
dard deviation � of elements of the random matrix A and
its spectral norm. Taking into account that the normalized
innovation matrix A(k) used in order to detect sensor in-
formation fusion Kalman filter faults consists of normally
distributed random elements with zero mathematical expec-
tation and the finite variance ai j ∈ N (0, 1), inequality (15)
can be applied to solve the diagnostic problem formulated
in this paper. It can be stated that if the elements ai j of the
normalized innovation matrix of the Kalman filter obey the
distribution N (0, 1), then inequality (15) must be fulfilled.
No fulfillment of inequality (15) is an evidence that the zero
mean of the elements ai j is biased, or the unit variance has
changed, or {ai j } differs from white noise.
The sensor information fusion Kalman filter will be tested

upon fulfillment of inequality (15) that in view of �= 1 and
expression (10) will be written in a simpler form√
max(n,m)�‖A(k)‖2�2

√
max(n,m) (16)

Hence, while solving the problem of testing the sensor infor-
mation fusion Kalman filter (3)–(6), the decision rule with
respect to the hypotheses must have the form

�0 :
√
max(n,m)< ‖A(k)‖2 < 2

√
max(n,m), ∀k,

�1 : if ∃k,where ‖A(k)‖2�
√
max(n,m),

or ‖A(k)‖2�2
√
max(n,m) (17)

The determined bounds for mathematical expectation of the
spectral norm of the normalized innovation matrix of the
m-channel Kalman filter are sufficiently simple and allow

Fig. 1. Graph of the statistic ‖A(k)‖2 for normal operating of the
measurement channels.
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Fig. 2. Behaviors of the normalized innovation sequences in the
case of normal operating of the measurement channels: (a) for the
first estimation channel and (b) for the second estimation channel.

for simultaneous check of mathematical expectations and
variances of the innovation sequences of all the channels.
In real exploitation conditions of the system, the test of the

sensor information fusion Kalman filter algorithm is reduced
to the following sequence of calculations performed at each
measurement step.

1. Using (3)–(6) and (7) calculate the multichannel Kalman
estimate of the state vector of the system and the values
of vectors of the normalized innovation sequences of dif-
ferent channels at the step k.

2. Compose the normalized innovation matrix of the m-
channel parallel sensor information fusion Kalman filter
for given n�2 and m�2 in the form (8).

Fig. 3. Graph of the statistic ‖A(k)‖2 in the case of bias in the
second measurement channel.

3. Determine the eigenvalues of the matrix AT(k)A(k) and
the spectral norm of the matrix A(k).

4. Calculate the statistic of arithmetic mean of the spectral
norm ‖A(k)‖2 using formula (10).

5. Check fulfillment of inequality (16) and make a decision
on normal functioning of the sensor information fusion
Kalman filter from the decision rule (17).

6. Repeat the sequence of calculations beginning from op-
eration 1 for the next moment of time k + 1.

3. Simulation results

Let us consider the two-dimensional two-channel dy-
namic system given by equation of state (1) and measure-
ments for the i th channel:

zi (k) = Hi (k)x(k) + vi (k), i = 1, 2 (18)

The system parameters are written in the following form:

	(k + 1, k) =
[

0, 5 0, 816
−0, 6 0, 4

]
, Hi (k) =

[
1 0
0 1

]
,

i = 1, 2;

Q(k) =
[
0, 1 0
0 0, 1

]
, R11 =

[
1 0
0 1

]
,

R22 =
[
0.64 0
0 0.64

]

Measurements were processed using the sensor information
fusion Kalman filter (3)–(6) (two-channel, in this case) by
parallel implementation, i.e., the optimal estimate of the state
vector has been obtained by simultaneous weight summation
of the innovation sequences vi (k), i = 1, 2, of two channels
with the use of the common extrapolator. According to def-
inition above the normalized innovation 2× 2 matrix of the
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Fig. 4. Behavior of the normalized innovation sequences in the
case of bias in the second measurement channel: (a) for unimpaired
estimation channel and (b) for impaired estimation channel.

two-channel Kalman filter is formed: A(k)= [�̃1(k), �̃2(k)].
The spectral norm of the innovation matrix and its math-
ematical expectation were calculated by means of (9) and
(10). The decision rule for the case under consideration n=2,
m = 2 (m is the number of channels) is written in the form

�0 :
√
2< ‖A(k)‖2 < 2

√
2, for k = 2, 3, . . .

�1 : if ∃k,where ‖A(k)‖2�
√
2, or ‖A(k)‖2�2

√
2 (19)

Obtained results are presented in Figs. 1–6. Fig. 1 shows
admissible bounds of the statistic ‖A(k)‖2 and a plot of
its behavior in the case of normal functioning of the both
filtering channels. The corresponding normalized innovation
sequences are shown in Fig. 2(a) and (b). To verify efficiency

Fig. 5. Graph of the statistic ‖A(k)‖2 in the case of change in the
measurement noise variance of the second measurement channel.

of proposed algorithm, beginning from the step k=20, a fault
in the first measurement sensor of the second measurement
channel is simulated, introducing a constant bias as follows:

z21(k) = x1(k) + 3 + v21(k) (k�20) (20)

As it is seen from expression (20) the constant bias was en-
tered by adding 3 to the measurements noises v21(k) in the
first measurement sensor of the second measurement chan-
nel. The simulation results corresponding to this case are
presented in Figs. 3 and 4. The corresponding results pre-
sented in Fig. 3 shows that the value of the statistic ‖A(k)‖2,
beginning from the 20th step, grows abruptly, and at the step
k = 22 it exceeds the upper admissible bound. This fact evi-
dences fault detection in the two-channel sensor information
fusion Kalman filter. Behavior of the normalized innovation
sequences in the case of bias in the second measurement
channel is presented in Fig. 4(a) and (b).

The performed simulations show that the detected mini-
mum fault rate is 4% of the measurement value when the
mean of the normalized innovation sequence is tested and
the detection time for this is 4 s.
To acknowledge the ability of checking normalized in-

novation sequence variance by means of the developed al-
gorithm, beginning from the step k = 20 the values of the
measurements noises v21(k) of the first measurement sensor
of the second measurement channel were changed by mul-
tiplying them by 3 as follows:

z21(k) = x1(k) + 3v21(k) (k�20) (21)

The obtained results are given in Figs. 5 and 6(a) and (b).
Plots in Fig. 5 show that the value of the statistic ‖A(k)‖2 in
this case after the 20th step grows abruptly, and at the step
k = 23 it exceeds its upper admissible bound. As a result,
using the decision rule (19) the fault in the two-channel
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Fig. 6. Behavior of the normalized innovation sequences in the
case of change in the measurement noise variance of the second
measurement channel: (a) for unimpaired estimation channel and
(b) for impaired estimation channel.

sensor information fusion Kalman filter is detected. The be-
havior of the appropriate normalized innovation sequences
is presented in the Fig. 6(a) and (b). The performed simu-
lations in this case show that the detected minimum fault
rate is 30% of the standard deviation of measurement noises
when the variance of the normalized innovation sequence is
tested and the detection time for this fault rate is 1.6 s.

4. Conclusion

Using the statistic of mathematical expectation of the
spectral norm of the normalized innovation matrix the
approach to sensor information fusion Kalman filter test

is proposed. The approach allows real-time simultaneous
check of mathematical expectation and variance of the in-
novation sequence and does not require a priori data on the
values of change in its statistical characteristics in the case
of fault. The upper and lower bounds of the statistic have
been found. They are determined by dimension of the mea-
surement vector and by the number of the filtering channels.
The algorithm of sensor information fusion Kalman filter
test is adaptable to the change in the number of estimation
channels and allows to detect faults in real time.
The proposed algorithm can be used when the dimen-

sions of the innovation vectors of different channels are not
equal. In this case the normalized innovation vectors, which
have dimensions less than n (n is the maximum dimension
of the used innovation vectors), should be completed with
the N (0, 1) distributed random numbers when composing
the (n × n) normalized innovation matrix of the m-channel
parallel sensor information fusion Kalman filter.
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