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Abstract In this study, the spatial quaternionic curve and
the relationship between Frenet frames of involute curve of
spatial quaternionic curve are expressed by using the angle
between the Darboux vector and binormal vector of the
basic curve. Secondly, the Frenet vectors of involute curve
are taken as position vector and curvature and torsion of
obtained Smarandache curves are calculated. The calcu-
lated curvatures and torsions are given depending on Frenet
apparatus of basic curve. Finally, an example is given and
the shapes of these curves are drawn by using Mapple
program.
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1 Introduction

The quaternion first time was introduced by Irish mathe-
matic William Rowan Hamilton in 1843. His initial attempt
to generalize the complex numbers by introducing a three-
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dimensional object failed in the sense that the algebra he
constructed for these three-dimensional objects did not
have the desired properties. In 1987, Bharathi and Nagaraj
defined the quaternionic curves in E°, E* and studied the
differential geometry of space curves and introduced Fre-
net frames and formulae by using quaternions [1]. Fol-
lowing, quaternionic-inclined curves have been defined and
harmonic curvatures studied by Karadag and Sivridag [2].
In [3], Tuna and Coken have studied quaternion-valued
functions and quaternionic-inclined curves in the semi-
Euclidean space E,*. In [4], Erisir and Giingér have
obtained some characterizations of semi-real spatial
quaternionic rectifying curves in IR,>. Moreover, by the aid
of these characterizations, they have investigated semi-real
quaternionic rectifying curves in semi-quaternionic space.
In [5], after general definition of quaternions, relations
between real quaternions and Serret—Frenet formulas have
been investigated. Although real quaternions are repre-
sented by four basis elements, vectors can also be expres-
sed by using their three basis elements that have complex
nature. On the other hand, the difference of quaternion
product than the well-known vector product is not an
obstacle to obtain Serret—Frenet formulas by real quater-
nions. In this study, an alternative formulation has been
developed for the representation of Serret—Frenet formulas.
In the literature, G. Darboux defined the DArboux vector
and many studies have been done in the light of this defi-
nition. Fenchell gave more importance to Darboux vector
interpretation initiated by G. Darboux and he enhanced [6].
The relationship between the Frenet frames of the invo-
lute—evolute curve couple for the first time was expressed
by using the angle between the Darboux vector and
binormal vector of the evolute curve in the Euclidean
3-spaces [7]. Later, Bilici and Caligkan expressed the
transformation matrix between the Frenet frames of the
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involute—evolute curve couple by using the Lorentzian
timelike (spacelike) angle between the Darboux vector and
binormal vector of the evolute curve according to causal
characteristic of the curve couple in the Minkowski
3-spaces [8—10]. In [11] study, matrix representation of the
quaternions and general properties of quaternion matrices
were given. There is a bijective curve in the set of real
quaternions and using the properties of quaternions, the
characterizations of involute—evolute curve couples are
obtained by Soyfidan [12]. The definitions of spatial
quaternionic Smarandache curves according to Bishop
frame are given and Frenet and Bishop elements of these
curves are calculated. Moreover, in four-dimensional
Euclidean space, quaternionic Smarandache curves
according to parallel transport frame are defined, Frenet
and parallel transport apparatus are calculated by Parlatici
[13]. Studies about Smarandache curves are available in
[14, 15]. The curvature and torsion of the spatial quater-
nionic Smarandache curve formed by the unit Darboux
vector with the normal vector were calculated [16]. The
spherical indicatrix curves drawn by quaternionic Frenet
vectors were computed. Also the quaternionic geodesic
curvatures of the spherical indicatrix curves to E* and S*
were found [17]. In [18], the normal vector and the unit
Darboux vector of spatial involute curve of the spatial
quaternionic curve are taken as the position vector, the
curvature and torsion of obtained Smarandahce curve were
calculated.

In this study, an alternative formulation has been
developed for the representation of Serret—Frenet formulas.
It was observed that a transition could be made between the
Serret—Frenet formulas of the main curve and the involute
curve.

2 Preliminaries
A real quaternion is defined with g of the form Q = {¢|q =

d + aey +bey + ces,d,a,b,c € R,ey,e;,e3 € R*}  such
that

e%:e%:engl,
e X ey = —ey X ey = ez, 21
e X ez = —e3 Xep = ey, ()
ey X ez = —e3 X ey =eg.

We put S,=d and V,=ae + be; +ce;. Then a
quaternion g can be rewritten as g = S, + V,, where S,
and V, are the scalar part and vectorial part of g,
respectively. Let p and g be any two elements of Q.
Then the product of p and ¢ is defined by
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<Vql ’ Vq:) + Sqn qu + quun + Vql A qu
(2.2)

q1 X g2 = Sq,Sq, —

where we have used the inner product and the cross-
product in R? [19]. On the other hand, the conjugate of ¢ is
denoted by ¢4 and given by ¢ = S, — V,,. These express the
symmetric real-valued, non-degenerate, bilinear form as
follows,

1
<7>|Q:QXQ_)R7 <1117512>‘Q:§(111XC]72+112><(]71)
(2.3)

it is called the quaternionic inner product [19]. Then the
norm of ¢ is

N(g) =/{@: Do = Vaxq,

A spatial quaternion set defines that
n={g9€Qlg+g=0} [1]. Let I=10,1] be an
interval in the real line R and s €1 be the are-length

parameter along the smooth curve [12]

(2.4)

3

70,1 = Quy 9(s) = D vils)er, (1<i<3).

i=1

(2.5)

The tangent vector y'(s) = #(s) has unit length N(t(s))=1
for alls [1]. Let y be a differentiable spatial quaternions
curve with arc-length parameter s and {¢(s),n;(s),n2(s)}
be the Frenet frame of y at the point y(s),

M n\s) =1s ni(s
N(’))N(S))’ 2( ) t( ) X 1( )
(2.6)

Let {#(s),ni1(s),ny(s)} be the Frenet frame of y(s). Then
Frenet formulae, curvature and the torsion are given by

7' (s) = k(s)ni(s),
ni'(s) = —k(s)t(s) + r(s)na(s),
I’lzl(S) = —r(S)l’ll (S),

where #(s), ni(s) and ny(s) are the unit tangent, the unit
principal normal and the unit binormal vector of a
quaternionic curve, respectively [1, 13]. The functions k,
r are called the principal curvature and the torsion,
respectively. Let unit speed regular curve 7y : [0,1] — Qg
and y* : [0, 1] — Qp be given. For Vs € I, then the curve y*
is called the spatial quaternionic involute of the curve y, if
the tangent at the point ) to the curve y passes through the
tangent at the point y* to the curve y* and (t(s),1*(s))|q =
0 [12]. The relations between the Frenet apparatus are as
follows [12]

ni(s) =

(2.7)
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Fig. 1 Darboux vector

m(s) = () + (s
k(s)™ +r(s) k(s)™+r(s)
na*(s) = rz(s) ~i(s) + k2(s) s (s)
k(s)™ +r(s) k(s)” +r(s)
(2.8)
and
_ VKB +r(s) (s k(s)r'(s) — K'(s)r(s)
IC*SIk( ’ T e —s k)R (s) +r2(s)
(2.9)

Darboux axis vector of 7y spatial quaternions curve
indicated by D and this vector is [16] (Fig. 1),

D = rt + kny. (2.10)

If the angle between D and n; is ¢, it is obtained that
k . r

T — np =——.

ViZ 12’ 4 ViZ ¥ 12

If the unit vector of quaternionic darboux vector indicated

by w [16],

cos ¢ = (2.11)

w = sin @f + cos Qny. (2.12)

In [14, 20], Ali and Turgut have introduced some special
Smarandache curves in Euclidean and Minkowski space. A
regular curve Minkowski space, whose position vector is
composed by Frenet vectors on another regular curve, is

called Smarandache curve [20]. Special Smarandache
curves have been studied by some authors
[7, 12, 15, 16, 20, 21]. Let y = y(s) spatial quaternionic
curve and {r,ny,ny} be its moving Frenet-Serret frame.
Then we can write Smarandache curve,

at + bny + cny
Bi) = ———
va*+b*>+c

The relations between the Frenet apparatus are as follows
from (2.8), (2.9) and (2.11) then we have [18],

t(s) = m(s)

(2.13)

ny*(s) = —cos @t(s) + sin ny(s) (2.14)
ny"(s) = sin @t(s) + cos pna(s),
and
“(s) = N(D) _ seco

O e TR T

, / (2.15)
Y (O R

lc—s|ND)?* k(s)|c—s]|

3 Smarandache Curves of Spatial Quaternionic
Involute Curve

In this section, we will find Smarandache curves of spatial
quaternionic involute curve and equivalent of this
Smarandache curves will be written as depending on basic
curve, respectively.

Definition 3.1 Let spatial quaternionic y* be involute of
spatial quaternionic y(s), t* and n;* be unit vector of y*. In
this case, spatial quaternionic Smarandache curve f§; can
be defined by

Bi(s) = = (" +m").

V2

Theorem 3.1 Let y* be involute of y(s). Frenet apparatus
of Smarandache curve [3| isHerein, coefficients are

(3.1)
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; —k*t* + k*n] +r'n;
ﬁl (Y) /2](*2 + r*z

o' + ¢ynj +ain;

n =
18 5 5 5
w12+ ¢" + 0y

(k*oy — r )" + (K*oy + rro)n] + (—k*¢, — kK w1 )n}

Mp =

Jrr+ o2+ e+ )

o Vot +¢,° + 0.2 (3.2)
T e g )
. VAR 47— k) py + )
By [r* (2](*2 + r*Z) _|_k*r>s</ _ k*/r*]z + (k*/r* _ k*r*/)z + (Zk*"3 + k*r*2)2
¥ B+ 0+ )
[r*(2k*2 + r*Z) 4k — k*’r*]2 + (k*'r* _ k*r*’)2 + (2k*3 + k*r*2)2
. (k2 4K () — 7 0)
[ (2K - r2) ke — K o (ke — k)P 4 (2 k)
__p*2 *2 K2\ ok kpkl g/ t* * *
W) = =k + 1) = (rE = k) t}}](s):(l)l + ¢inj + oun; (3.6)

by = =k Q2K +377) = (r = r kY + k)
a1 = K (2% + %) = 2k* (rk — k)
m o=k + k(7 =3k — Kk
0 =~k — k("2 4 3K7) = 3 + K
pr = =k = L 2k ke
(3.3)

Proof 1If Smarandache curve f5,’s derivative is taken,
tangent vector is

=k Ky A+

Igy(s) = \/W (3.4)
If (3.4) expression is taken derivative, we obtain
coefficients where

) = fk*2(2k*2 i r*z) — PR — k)

¢, = =k + 377 — (12 — Y+ k) (3.5)

o] = k*r*(zk*z + r*2) _ zk*(r*k*/ _ k*r*l)

impending t;fl is, we reach

@ Springer

(Zk*z + r*2)%

If the curvature of curve f8; is shown with curvature kg, , kg,

is
Vo2 + ¢ + o)

(2k*% 4 2}

ks, = (3.7)

If principal normal vector of f8; is shown with nyg , from
(2.6) equation n;p is

* * *
w1t + ¢1n1 —|—0'1n2

nig, = 5
Vo2 + ¢ +a?

Because of nyp = tg X nip, nap, Vector is
(k*o1 — r* )t + (kK*o1 + r*o)n} + (—k*¢) — kK*w)n;
V (@12 + ¢, + 07) (262 +r72)

(3.8)

mp =

(3.9)
Second and third derivatives of curve f3; are, respectively,

7(](*2 + k*/)[* + (k*/ _ k*Z _ r*Z)nl* + (k*r* + r*/)n2*

ﬁlz \/E ]

'+ On* + pyny*

/1 _771
ﬂl \/i
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We obtain that coefficients are

n = k*3 +k*(r*2 _ 3k*/) _ k*//

0y =~k —k*(r? +36") = 3 + & (3.10)
py = k2 = 28k ke
If the torsion of curve B, is shown with ry,, torsion rg, is
= ﬁ(k*2+r*2—k*')(k*p]+r*t11)

B [F* (2/{*2 + r*2) Sl — k*'r*]2 + (k*’r* _ k*r*/)Z + (2/(*3 +k*r*2)2

. K )0+ )
[P 2k + r2) + k! — k' o (ke — ko)

+ (267 + k)’

N (k2 + k) (k*p; — r*6;)
[ (22 + 7 2) k! — k) o (ke — k) +

2k + k)
(3.11)

]
We can give following corollary

Corollary 3.1 Frenet apparatus belonging to Smaran-
dache curve B, of the quaternionic involute curve is,
respectively,

t9.(5) = (¢'sing — k)t — N(D)ny + (¢’ cos ¢ + r)ny
()" + 2N(D)’

ot + (];11’11 +o1n
nip, = —
\/ 0512 + ¢1 + (7712
—N(D)61 — (¢' cos ¢ + )¢,
n2[j] -
(o2 + 207 @2+ 62 + o)

., Ao sine — k
n o1(¢@' cosp + 1) — 1 (¢ singp — k) n

\/(<p’2 + 2N(D)2) (12 + % + 612)
n ¢1(¢'sin @ — k) + &N (D) i
\/(qﬂ +2N(D) ) (@1 + 6,2 + 61?)

Vol + ¢, + a1
kg

(02 +2v(0))
sM@1+ 019, + 015
Of+di+0

(3.12)

where coefficients are

1= (¢"sing + ¢ cosp —k' +kN(D))1/ ¢ +2N(D)?

~(@/sing -0 (Vo +2N<D>2>'

$1= (N =N(D) )1/ o> +2N(D)
+N(D)< 40’2+2N(D)2>l
7 = (q)"cosq)— (p’zsin(p—l—r’—i—rN(D)) (p’z—i—ZN(D)2

—(¢'cosp +r) ( @2+ 2N(D)2>/

i = ¢" sing+3¢'¢" cosp — ¢ singp — kK’
+K'N(D) +2kN (D) + kN(D)*

0, = ¢”’N(D) — kk' — r + N(D)* — 2N(D)N(D)' + N(D)"

g1 =¢" cosp —3¢'¢"sing — ¢ cosp+ 1" — ' N(D)

—2rN(D) — rN(D)?

&31:—N(D)(q;”cosq)—qo’zsinqo+r'—rN(D))
+ (MDY +N (D)) (¢ cos g +7)
(7)1 (¢ cosp+r ((p smq)—i—(p cosp — k' +kN(D ))
—(¢@'singp —k)( ¢@"cosp— ¢’ smqo—i—r—rN(D))
51 = (¢/sing — k) (~N(D)* = N(DY )
+N(D)<go”sinqo+q0'2cos<p—k’—i—kN(D)).

(3.13)

Proof 1If (2.14) equation is substituted into (3.1) equation,
we obtain that expression depending on basic curve of
quaternionic Smarandache curve f; is,

Bi(s) = —(~

75 (€08 plu)(s) +m() +sin pls)m(s))

(3.14)

If (2.14) and (2.15) equations are substituted into (3.4)
equation, we obtain that tangent vector of quaternionic
Smarandache curve f; is

” (S) _ ((P/ sin @ — k)l - N(D)n] + ((/)/ cos @ + r)nz
(¢")* + 2N(D)

(3.15)

@ Springer
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From Egs. (2.15) and (3.5), we can write new coefficients
are

oy = (¢"sing + ¢ cosp — k' +kN(D))1/ ¢ + 2N(D)?

—(¢'sing — k) ( o+ 2N(D)2),

1= (=MD = N(DY)\/9? +2N(D)’
+ N(D) ( P2+ 2N(D)2),

71 = (¢"cosp — @sing +r + rN(D))\/ ¢ + 2N(D)?

— (@' cosp +7) (\/ o+ 2N(D)2)/.
(3.16)

If (2.14), (2.15) and (3.16) equations are substituted into
derivative expression # (s), the expression in terms of
Frenet elements of basic curve of t;;l derivative vector is
found

/ ot + iy + ainy
tﬁ] (S) = 233
(¢ +2N(D)")?

(3.17)

From (2.15), (3.7) and (3.16) equations, the expression
depending on curvatures of basic curve of curvature kg, is

Vor + ¢, +a?
Ky, =

z (3.18)
© (92 +2N(D)’)

From (2.14) and (3.8)equations, the expression in terms of
Frenet elements of basic curve of vector nyp, is

wit+ (,Zg]nl +o1ny

Mg = -
Vori+¢ +ai’

If (2.14) and (2.15) equations are substituted into equation,
the equivalent in terms of Frenet elements of basic curve of
binormal vector nyp, is obtained that

(3.19)

—N(D)gi — (¢ cos o + 1),
nop = t

Vio? + 2N 0P 617 + 6% + i)
n o1(¢'cosp +r) — a1 (¢ sinp — k)
V(@2 + 2N DY) (02 + 6,2+ 672)

'sinp — k) + &N(D
+ (o ® ) 1N(D) 1y

V002 +2NDP) @1 + 62 + i)

m (3.20)

@ Springer

From Egs. (2.15) and (3.10), new coefficients are as
follows,

iy = ¢" sing +3¢'¢" cos p — ¢ sing — k" + K'N(D)

+ 2kN(D)' + kN(D)?
0, = ¢”N(D) — kk' — rr' + N(D)* — 2N(D)N(D)' + N(D)"
oy = ¢" cos o — 3¢'¢" sing — ¢ cos ¢ + 1

—/N(D) — 2rN(D)' — rN(D)?

@, = —N(D) ((p” cosp — @ sing +r — rN(D))
+ (N(D)2 + N(D)’) (¢' cos ¢ + )

¢, = (¢ cosp+r) (qo” sing + ¢ cosp — k' + kN(D))
— (¢'singp — k) (q)" cosp — @ sing + 1 — rN(D))
51 = (¢/sing k) (~N(D) ~N (D))
+N(D) ((p” sing + ¢ cosp — k' + kN(D)).
(3.21)

The expression in terms of Frenet elements of basic curve
of torsion rg, of Smarandache curve B, is as follows,

Lo+ 01d, + oo
rﬁl:\/i’h ~1 1~¢;1 ~Pl 1
o7 + ¢+ o1

(3.22)

O

Definition 3.2 Let y* be involute of y(s), n1* and n,* be
unit vector of y*. In this case, Smarandache curve f3, can be
defined by

- (n* +n2*)
ﬁZ(s) - 1\/§ .

Theorem 3.2 Let y* be involute of y(s). Frenet apparatus
of Smarandache curve f3, is

(3.23)
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—kt* —rnj +my*

V2r2 4 k2

_apt” + gpny + aan;

nlﬁz - 2
\ @22 + " + 022

g, (S)

—r* (o2 + Po)t" + (rws + k*oa)n} + (—k* Py + rw))nj

n2p, =

V(@2 + 627 + ) (2r2 + &72)

. \/Q\/w22+q522+022
5 =

(k*2 + 2;’*2)2

(3.24)

\/Z[(r*(zrsd +k*2))’72 + (—k*/}”* +k*r*/)02 + (k*(k*z + 2’,*2 + I"*/) _ r*k*/)p2:|

g, =

I:r*<2r*2 + k*2>}2+[_k*/r* + k*r*/}z_’_ [k*(k*z + 2,,.*2 + r*l) _ r*k*/]z

Herein, coefficients are

Wy = 2P (=K + ) + K (k2 2

by = k*(—k*3 R R — r*2(3k*2 + Zr*z)
Gy = k*z(r*' -~ r*z) _ r*(2r*3 K
S S S A ) S
0y = 3 — k2 Z 3Kk 4 32—
py = 4 Pk =3 —

(3.25)

Proof The proof is similar to the proof of Theorem 3.2. [J

Corollary 3.2 The Frenet apparatus belonging to
Smarandache curve f, of the quaternionic involute curve
is, respectively,

(¢ cosp + @' sinp)t — N(D)ny + (¢ cos ¢ — ¢ sinp)ny

1p,(s) =
() 2¢% + N(D)?

ot + (ﬁ_znl + oxny
nig, = —,
V@2 + ¢y + 622
—N(D)a> — (¢ cos p — ¢’ sin ) ¢,
nyp, = > = t
V202 £ NDP) (@22 + 677 + 02?)
. (¢' cosp — @' sin @) — (¢ cos ¢ + ¢’ sinp)a
n
V207 + NDY) (@22 + 67” + 03?)
(¢'cos@ + ¢/ sing)g, + N(D)o,
2
V(207 + NDP) (@2 + §* + 52?)

V2o + 6, + 632
3
(2@12 +N(D)2)z
oy + Oy + 036
%:ﬁﬂzj 2~¢;2 ~P202
oF + ¢+ 73

kﬁz -

(3.26)

where coefficients are
= 11 2 . " 2
Wy = ((p cosp — @ singp + @' sing + ¢ cos<p+kN(D))
!
292 + N(D)> = (¢ cos ¢ + ¢’ sin (p)( 207 + N(D)2>
_ ’
52 = (VD) N(D))\ 20" + MO+ (D) (20 4 N(DP
Gy = ((p" cosp — ¢ sing — ¢ sing — > cos p — rN(D))
!
202 + N(D)> = (¢ cos ¢ — ' sin (p)( 20 + N(D)2>

/I

1= ¢" cosp —3¢'¢p
+3¢'¢" cos p — ¢ sin g + K'N(D) + 2kN(D)' — ko' N(D)

mn

sing — ¢ cos @ + ¢ sin ¢
0> = 2¢"N(D) + ¢"*N(D) + N(D)’ + N(D)'¢' = N(D)"
0, =¢" cosp —3¢'¢" sing — ¢ cos p — ¢" sin @
—3¢/¢" cosp+ ¢ sing — ¥N(D) —2rN(D)' + rN(D)¢'

@y = —N(D) ((p” cosp — ¢ sing + ¢ sinp — ¢ cos ¢ — rN(D))

— (¢’ cos p — ¢'sin @) (N(D)¢' — N(D)")

@ Springer
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by = (¢’ cos ¢ — ¢’ sin )

((p” cosg + ¢ sing + ¢ sing + ¢ cos ¢ + kN(D))

— (¢’ cos ¢ + ¢’ sin @)

<(p” cosp — ¢’ sing — ¢ sing — > cos p — rN(D)>
G2 = (¢'cos ¢ + ¢'sin @) (N(D)¢' — N(D)')

+ N(D) (q)" cos @ + ¢ sing

+¢"sing + ¢'* cos ¢ + kN(D)) .

(3.27)

Proof From (2.14) and (3.23) equations, the expression
depending on basic curve of curve f,(s) is

Ba(s) = \/Li [(sin @ — cos @)t + (sin @ + cos @)ny].

(3.28)
Proof is completed from (3.24), (3.25) (2.14) and (2.15)
equations. O

Definition 3.3 Let y* be involute of y(s), * and ny* be
unit vector of y*. In this case, Smarandache curve f; can be
defined by

(@' cos — k)t + (—¢'sing + r)ny

g, = n*

—k*t* 4+ r*ny*
k¥ 4 22

et +k*l’l2*

mp, = —F—
Bs 1/k*zJ’»r*Z

2(k*> 4 r+2)
kﬂB = k* — ¥

_ \/E[k*Sp:; _ 2k*2r*p3 + k*2r*”3 4 k*r*sz _ 2k*r*27’3 4 r*S}h}

Mg, =

" (e = PP+ e — )P
(3.30)
Herein, coefficients are
Ny = =3K°K + 2k + K
03 = =k + k2 — k' r? + 7 k7 — (3.31)

@3 = Kr + 2K — 3.
Proof The proof is similar to the proof of Theorem 3.2. []

Corollary 3.3 The Frenet apparatus belonging to
Smarandache curve 5 of the quaternionic involute curve
is, respectively,

tﬁ3 (S) = >
V@ — 20/'N(D) + N(D)
A @3t + 3y + G3ny
N
R [((p’ sin ¢ — r)(f)}]t + [(¢'sinp — r)wz — (¢’ cos @ — k)a3]n; + [(q)’ cos g — k)(j)_3]n2
2p, =
\/(w32 + s’ +032) (qo’z —2¢'N(D) + N(D)z) (3.32)
\/2 (@32 s+ 632>
kﬁz = 3
((p’2 —2¢/N(D) + N(D)Z)
ra, = \/5’73653 + 03¢5 + 9303
’ @32 + §3° + 732
4+ nt where coefficients are

Theorem 3.3 Let y* be involute of y(s). Frenet apparatus
of Smarandache curve f3; is
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o3 = ((p/" cos @ — ¢ sinp — k’) \/90/2 —2¢/N(D) + N(D)?

— (@' cos @ — k) (¢'* — 2¢/N(D) + N(D)?)'

92 = (0N (D) = N(DJ*) /o ~ 29N (D) + N(D)

63 = <go” sing — ¢'* cos @ + r/) \/(p’2 —2¢'N(D) + N(D)*
—(=¢sing +r)(¢"* = 2¢/N(D) + N(D)*)
iy = ¢@" cos o — 3¢ ¢" sinp — ¢ cos @ — k"
—K¢'N(D) +kN(D)?
03 = ¢"N(D) — kk' — r’ + ¢"N(D) + ¢'N(D)' — 2N(D)N(D)'
@3 =—¢"sing —3¢'¢" cos p + ¢ sinp + 1’
+r'¢/N(D) — rN(D)*
@3 = (¢ sing — r)(¢/N(D) — N(D)?)
¢y = (¢'sing — r)(¢" cosp — ¢/ sinp — k)
— (@' cosp — k)(—¢" sinp — ¢> cos @ + ')
73 = (¢' cos @ — k)(¢/N(D) — N(D)?).
(3.33)

Proof From (2.14) and (3.29) equations, the expression
depending on basic curve of curve f,(s) is

1
s) = ——|(sin @t + ny + cos @ny)|. 3.34
B (s) \/5[( @t +m ony)] (3.34)
Proof is completed from (2.14), (2.15), (3.30) and (3.31)
equations. [J

Definition 3.4 Let y* be involute of y(s), t*, n* and ny*
be unit vector of y*. In this case, Smarandache curve f3, can
be defined by

Ba(s) = L(t* +n" + ).

V3

Theorem 3.4 Let y* be involute of y(s). Frenet apparatus
of Smarandache curve f, is

(3.35)

.(5) k't + (k" — r*)m ™ + ring*

g, \8) =

. V2K + k)
_ogt” + pyny” + oany”

nig, >
\ 027 + by + 042

((k* = r*)oq — r*,)t* + (Fros + kroy)m™* — (K" ¢y + (K — r*)ws)n*

nap, =

V@ £ 202 2k (2 + ¢4 + 022)
Y3 Joitdita
b = 4 (k*2+r*27k*r*)2

V31494 + Ouzy + pyls)
B+A+4

T =

(3.36)

Herein, coefficients are
w4 = k(=2 — 42 + 47k — k)
+ k(K 4 20 4 28 — 2k
By = K 2(=2k — 472 4 2k5r — )
+ r*2(72r*2 42K+ k*/) + k*r*(k*/ . r*’)
gy = 262 (kK — 2 ) 4 R (G — 2r k)
— K (r 2k
Hy = k' — k" = 3Kk 4 2k k7 4 ke
0y = r — k7 = 3(k'k" + 1) — (=& + ")
+ Kk =)
s = P B 3 L2k 4k
Oy = 27 (K — ) + k°r — rke +2r*
sty = Kr — k!
TSR] S L) ) S S
(3.37)
Proof The proof is similar to the proof of Theorem 3.2. [

Corollary 3.4 Frenet apparatus belonging to Smaran-
dache curve P, of the quaternionic involute curve is,
respectively,
1 (¢'cosp+ ¢'sing — k)t = N(D)ny + (¢’ cos ¢ — ¢ sing + r)ny
¢” — ¢/N(D) + N(D)*

g = —
By \/E

w4t + 4’74’11 + oyny
Mg, =
0 + ¢y + 64
e~ —ND)Gs— (¢'cosp — ¢sing + 1)y
N e - N D) NP + g+ )
. (¢ cosp — ¢@'sinp + )y — (@' cos @ + ¢’ sinp — k)oy
V202 — N D) + NDY) 2 + 62 + )
(¢’ cos @ + @' sin @ — k), + N (D)o
V207 — gND) + NDP) (@2 + b + 0)
V3 o2+ ¢+ 62
2

(¢ — ¢/N(D) + N(D))}

t

ny

+

kg, =
404 + (;4&4 + PaGy
py, = V3D Duby DT
Wy +¢4 + 04
(3.38)

where coefficients are
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Fig. 2 Spatial quaternionic
Smarandache curves

15

Spatial Quaternionic <—

curve

05

P, - curve <— =5

B, - curve

/I

s = ¢" cosp — 3¢ ¢" sinp — ¢ cos ¢ + ¢" sin ¢
/I

+3¢'¢
— K" + K'N(D) + 2kN(D)' — kN(D)¢' + kN(D)*

3 .
cos @ — @' sing

0 = ¢"N(D) + ¢°N(D) + N(D)* — kk' — rr’
+ ¢'N(D) + ¢"N(D) — 2N(D)N(D)' — N(D)’

pa =" cosp —3¢'¢"sinp — ¢ cosp — " sin g

/ I

-3¢0
+ 7" — FN(D) — 2rN(D)' + rN(D)¢' — rN(D)*

cos @ + ¢" sin

w4 = —N(D) (go” cosp — ¢'* sinp—
@"sing — ¢ cosp + 1 — rN(D))
~ (N(D)g' = N(D)* = N (D))
(¢ cosp — @' sing +r)
by = (¢ cosp — ¢’ sing +r)
(q)" cosp — @' sing — ¢ sing + ¢'* cos ¢
— Kk +kN(D))
— (@' cosp — ¢’ singp — k)
(go" cosp — @' sing — ¢ sing — ¢'* cos ¢
+7 —rN(D))
G4 = (¢'cos g — ¢/ sin — k) (N(D)g = N(D)’ = N(D)')
+ N(D) ((p” cosp — @' sing + ¢” sin @

+ ¢ cos ¢ — K + kN(D)),
(3.39)

Proof From (2.14) and (3.35) equations, the expression
depending on basic curve of curve f,(s) is

. .
By = 7 [(sin @ — cos @)t + ny + (sin @ 4 cos @)ny].
(3.40)

@ Springer

[ Spatial Quatenionic

Involute curve
——\_3(/ » [;-curve
02 o
e e B, - curve
el e o2 2

Proof is completed from (2.14), (2.15), (3.36) and (3.37)
equations. O

Ormnek 3.1 Let be spatial quaternionic curve

7(s) = (?cos <\/?§s> —i—\/?Esin <§S>>el
2V5 V2 (V5 V2 (V5
— (Ts>ez + <TCOS <?s> +7s1n<?s>>€3

Involute curve of curve vy is

7(s) = (ﬂ sin (ﬁ S> + @s sin (? s) + \q—l—ocos <\/?§ s)

10 5 10
V10 V5 V2 V5 V2 V5
7Wscos ? +7scos ?s +7ssm ?s e

V10 . (V5 V10 . (V5 VIO (V5
+ <sm<s> sm(s)erlocos <s>

10 5 10 5 5
V0 s[5} SV s (V) V2 (Y5
To S cos 59 5 scos 59 5 5s 55 e

In terms of definition, we obtain special Smarandache
curves f, B,, p3 and B, according to Frenet frame of
spatial quaternionic curve (Fig. 2).

= <f%mcos<l/5 V3s) V5 +1/10 V10sin(1/5 V55)
+ 55 V105 cos(1/5V3s) V5 — g v/i0sin(1/53s) V5
~1/10V/10cos(1/5v/55) +%f16ssin(1/5\/§s)\/§
+1/2v2c05(1/5V535) = 1/10Vassin(1/5V35) V3
+1/2V2sin(1/53s) +1/10V2scos (1/5 V5s) V5, 0,
L 10005(1/5\/5?)\/571/10@Sin<1/5\/§s>

50
—5—10\/T6SCOS<1/5 ﬁs)f—%@sin(l/S \/§s)\/§
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~1/10 \/Ecos(us ﬁs) +51—0\/ﬁssin<1/5 ﬁs)\/E
~1/2v2c0s(1/5V55) +1/10V2ssin(1/5V35) V5
+1/2/2sin(1/5V55) +1/10V2scos (1/535) V5)

" = e (35 VI08in(1/5 V)

+1/25 V10 cos(1/5V55) V5.
7% lO&sin(l/S\/gs)f%

+1/25V10sin(1/5V55) V3
+%\/16360s<1/5 \/55) - 1/5\/§sin<1/5\/§s)\/§

~1/10 ﬁscos(l/s \Gs)
+ 1/5\/5005(1/5\/5?)\/57 1/10\/§ssin(1/5 \/§s),o,
—% 10sin(1/5v/35) — 1/25v/10cos(1/5V/55) V5

+%\/ﬁssin(l/5 ﬁs)

—% 10cos<1/5 \/gs) +1/25 \/l—dsin<l/5 \/gs)\/g

+$\/ﬁscos(1/5 V5s)

+1/5V2sin(1/5V/55) V5 + 1/10v2scos (1/5 V5s)
+1/5V2c0s(1/5V55) V3

4/10xf2ssin(1/5 \/§s))

V5(35% — s+ 23) 0
V3052 =105 + 505

\/ﬁCOS(l/S \/53)

nz* = (0, —2/5

4 Conclusion

In this study, we have calculated the Smarandache curves of
the involute curve of any curve. To put it simply, we derived
curves from a curve according to a method. We found the
Frenet frames and curvatures of these curves, which we call
Smarandache curves. Finally, we found these results
depending on the Frenet frames of the main curve.

Acknowledgements Authors are also thankful to honorable review-
ers for their valuable suggestion which helps to improve the quality of
the manuscript.
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