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Abstract 

Various parameters are taken into account when calculating fleet in maritime transport. The most 

important of these is fuel consumption. Since the fuel consumption is proportional to the speed of the 

ship, high speed brings high fuel consumption. Increasing number of ship means increasing costs. In this 

study, we use the greatest integer function to find the optimum number of ship with lower cost. In 

addition, we calculate daily freight for voyage charterer depending on the number of ships by using this 

function.     
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1. Introduction 

Experimental data show that fuel consumption varies geometrically with increasing speed. For example, 

at some speeds, when you increase your ship's speed by 30%, your consumption is twice as fast as the 

original speed. While the vessels are anchored in the port, roughly a quarter of the fuel consumption in 

the sea is produced by fuel fuels [1]. In the case of neglecting the load on it, there is a classical correlation 

which is proportional to the power to increase the speed and fuel consumption by showing the fuel 

consumption of a ship with F. That is, 

F(v) = λ. vΩ  

λ >0               [2] 

 

However, since there are some fixed costs to show with s, a daily cost of a ship is C1 = s + F(v) . Similarly, 

the 1-day cost of n homogenous ships is Cn = n(s + F(v)) = n. C1 [3] 

 As can be seen, the number of ships and the cost are increasing in direct proportion, but if the speed is 

inversely proportional to the strength of the speed, the cost can be further reduced by increasing the 

number of ships by only 1 and reducing the speed to a very small amount. 
Example 1.1  

For a ship with fixed cost s = $ 1000 and speed v = 20,1 knots, λ = 0,64 means that a 1(one) day cost is 

C1 = $ 6197. For two smaller vessels with the same characteristics but with a speed v = 20 knots, the cost 

would be C2 = $ 12240. At first glance it may seem more costly to ship 2 slower and smaller vessels, but 

the increase in the number of vessels will cause the cost to decrease. For example, for n = 10 vessels, C10 

= $ 61970, C11 = $ 67320. For the convenience of calculation, Ω = 3 is taken for convenience, and the 

fixed cost is considered unaffected by a very small reduction of 0.1 knots. In Table 1, ship number 

relationships are given for s = $ 1000 and λ = 0.64. [4] 
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Table1: Regretion with s = $ 1000 and  λ= 0,64 [4] 

n: Cn at 20,1 kt Cn+1 at 20 kt  

1 $6197,18 $12240 

2 $12394,36 $18360 

3 $18591,55 $24480 

10 $61971,84 $67320 

50 $309859,23 $312120 

80 $495774,77 $489600 

81 $501971,96 $495720 

 
As shown in the table above, the cost of 80 ships at 20.1 kt is greater than the speed of 81 ships at 20 kt. 

In other words, although we have increased the number of vessels, our costs have been reduced by only 

0.1 kt slowdown. 

 

2. The Greatest Integer Function   

For all real numbers, x, the greatest integer function returns the largest integer less than or equal to x. In 

essence, it rounds down a real number to the nearest integer. It is denoted by [.] 

f :ℝ        ℤ ,   f(x) =[x]. 

The greatest integer function has these properties: 

 (i) k ϵ ℤ  such that f(x) =  k ⇔ k ≤ x <  k + 1       
 (ii) For all  x ϵ ℝ and  k ϵ ℤ   f(x+k) = f(x) + k 

 (iii) For all x ϵ ℝ  if(x) ≤ x <  f(x) + 1 

 

Proposition 2.1 

C′
1 and C1 are the costs of two ships which are slow and fast respectively.  Let κ be the greatest integer 

function and let n be the number of the ship. The smallest natural number n providing the inequality of  

(n+1). C'1 < n.C1 is  κ (
C′

1 

C1−C′
1
) + 1 This equation does not depend on the changing of the fixed cost s. 

[4] 

Proof: 

We know that  C′
1 = s′ + F(v′)  C1 = s + F(v)  

Let  (n+1).C'1 < n. C1 be obtained.  

n. C′
1 + C′

1 < n. C1 

C′
1 < n. (C1 − C′

1) 
C′

1 

C1 − C′
1

< n 

According to the third property of the greatest integer function, the smallest natural number n providing 

the inequality is n = κ (
C′

1 

C1−C′
1
) + 1  

If we use this proposition, we can calculate the number of the ship in example 1.  

n = κ (
C′

1 

C1−C′
1
) + 1=[

6120

77
] + 1 = [79,48] + 1 = 80 so, C80 = $495774,77 and  

C'81 = $495720. We showed that cost of 80 ships are greater than 81 ships in the table 1 before. So, we 

can calculate this by using Proposition 2.1. 

In some cases it may be less costly to do a few times with smaller vessels. To generalize this situation, 

the optimal number of vessels can be found by the following proposition. 

 

Proposition 2.2 

Let C1 and C'1 functions be the consumption functions of the two large and small ships respectly. Let κ 

be the greatest integer function. For  m>n , the smallest natural number n providing the inequality  n.C1 > 

m.C'1 is  κ (
C′

1 

C1−C′
1
) + 1 . 

Proof: 

Let n.C1 > m.C'1 be obtained. for m>n .  and s'  be the  fixed cost of C'1 . So, 

 m.(s'+F(v '))< n.s + n.F(v)  

⟹ m.s' + m.F(v ')  <  n.s + n.F(v) 

m>n obtains m=n+k, k ϵ  ℤ+  

n.s' + n.F(v ') + k.s' + k.F(v ') <  n.s + n.F(v) 

 ⟹ k.s' + k.F(v ') <  n.s + n.F(v) -n.s' - n.F(v ')  
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⟹ k.(s' + F(v ')) <  n.(s + F(v) -(s' + F(v ')))  

⟹
n

k
>

C′1
C1 − C′1

 

⟹
n

m−n
>

C′
1

C1−C′
1
.  

the smallest natural number n providing the equality is n = κ (
C′

1 

C1−C′
1
) + 1  

 

3. Voyage Charter 

Instead of increasing the number of ships, it will be more profitable to carry the maximum load in the 

shortest time by reducing the time of the voyage for voyage charter. In other word, we must increase the 

speed.  

 

16λPv3 + λDV2 = 8F equation is valid for this transportation. Here D, Number of days at sea; P stands 

for the number of days in port and F stands for freight earned. In particular, if we take P = 0, we get the 

equation kDV2 = 8F [1] 

 

Example 3.1 

Let λ  be the constant for the ship machine and v be the speed of the ship. If λ = 0,5 and v = 10 kt. then 

earned freight is 8F = $50. But, if we increase the speed by 0.5 knots, earned freight will be 8F = $55; 

125. [1] 

 

Proposition 3.2 

Let κ be the greatest integer function v1and v2 are the speeds of the ship, D be the number of the day. 

and v1 < v2  If we take D =  κ(
v2

2

v2
2−v1

2) then  (D − 1)v2
2 < D. v1

2 inequality is obtained. 

Proof:  

If we consider  (D − 1)v2
2 < D. v1

2 inequality, we can divide by D and we get D <
v2

2

v2
2−v1

2 The smallest 

D number that satisfies this condition is D =  κ(
v2

2

v2
2−v1

2). 

Now we can use this proposition on example 2.  

If we take D =  κ (
v2

2

v2
2−v1

2) =  κ (
110,25

10,25
) = 10, we have 10 × 0,5 × 102 = 500 = 8F 

And for  (D − 1) day, 9 × 0,5 × 10,52 = 496,125 = 8F that means spending longer days with lower 

speed is more profitable than spending shorter days with higher speed   

 

4. Literature Review.  

Carlou (2011) calculated effects of relation of CO2 emisison and reducing of speed which included 

various factors such as size, speed number of days at sea, seaport, fuel consumption for container vessels 

[5]. Christiansen et al (2012) compiled to 131 articles which are published journals about subject of ship 

routing and scheduling between 2002-2012. They presented methods which used in their study [6]. Kim 

et al (2012) determined amount of fuel and optimum vessel speed for a specific vessel route. The study 

was solved the problem by using epsilon-optimal algorithm [7]. Notteboom and Cariou (2013) researched 

effects of slow speed applications. Also they analyzed fuel consumption and BAF which paid by shippers 

[8]. Khor et al (2013) set up a software to optimize speed of ultra-container vessels. They found out 

optimum speed as 19.5 knot [9]. Sheng et al (2014). Fagerholt et al (2010) solved the optimal speed on 

a specific route problem [10]. Mersin and Nur (2019) built a model by using the greatest integer function.  

 

5. Results 

In the first part of the study a very small decrease in speed has been shown to have a positive effect on 

increasing the number of ships. We can calculate optimum number of the ship with “greatest integer 

function” which is represented by κ in this study. It has been shown that the smallest number of vessels 

providing n. C1> m. C′
1inequality for n> m, which is the consumption functions of two large and small 

vessels, respectively, C1and C′
1, is κ (

C′
1 

C1−C′
1
) + 1 In this way, 20 kt. 81 ships departing at a cost of 

$ 495774.77 from 20.1 kt. The cost of 80 vessels traveling quickly was found to be $ 495720.  

In the second part, it is seen that the same function can be applied for a voyage charter. 

In addition, we see that spending longer days with lower speed is more profitable than spending shorter 

days with higher speed for voyage charter. 
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